Piezoelectric components for usual space and cryogenic environment

ESA Space Passive Component Days

12 October 2016

CTEC: <u>F. Barillot</u>, F. Bourgain, C. Belly, ESA: C. Allegranza, D. Lacombe

Summary

- ☐ Piezoelectric actuators in space applications
- ☐ Proposal for ESCC Generic specification
- Piezoelectric actuators in cryogenic environment
- ☐ Example of CFSM cryogenic mechanism
- Conclusion

Piezoelectric actuator

- ☐ 2 types of piezoelectric actuators
 - High voltage actuators
 - Simple stacked structure
 - Typical layer thickness : 5 mm
 - High voltage : > 1kV max voltage

o Multilayer Actuators

- Complex sintered structure
- Typical layer thickness: 0.1 mm
- Low voltage: 50 to 200V max voltage

APA: Amplified Piezoelectric Actuator

- ☐ Base elements
 - o 1 metal shell
 - Piezoelectric ceramic preload
 - Displacement amplification
 - o 1 piezoelectric ceramic
 - o 1 metal wedge

Piezoelectric actuators for space application

- Over the years, several actuators and mechanisms have been qualified and flown with piezoelectric components inside
 - Rosetta-MIDAS (flying)
 - o PICARD
 - o SWARM
 - o LISA
 - o Pharao
 - O

Piezoelectric components specificities

- ☐ Piezoelectric components are both
 - Electrical components
 - Mechanical components
- Several suppliers available, most components vacuum compliant but no components dedicated to space applications
- A GSTP has been started by ESA to improve the accessibility of piezoelectric components in Space Applications

ESCC Generic specification

- ☐ Define activities to be performed to propose a qualified component usable off the shelf.
 - In process control verification (mainly electrical tests).
 - Qualification tests to be performed (to be repeated periodically) :

12 month period Control Group Group 1 : Control group Mechanical functional test ☐ Mechanical functional test DPA on 3 MLA

- Measurements
 - Free stroke (f < 10Hz, sinus or triangle signal)
 - Resonant frequency in free-free conditions

Blocked force

GROUP 1

Group 1: Control group Mechanical functional test DPA on 3 MLA

- ☐ Destructive Part analysis
 - o Cross section done in the soldering plane
 - o Criteria to check:
 - Distance between inter electrode
 - Ceramic porosity and micro defects
 - Coating thickness (if any)
 - Soldering point quality (cavities, micro-shrinkage...)

GROUP 1
12 month period
Control Group

Group 2 : Electrical limi

- □ Cleaning resistance
 - o Critical for numerous space project were cleanliness is a critical aspect.
 - No ultrasonic bath requirement
 - Alcohol only (No requirement for water or strong solvent)

GROUP 2

Group 2 : Electrical limi

- ☐ Thermal vacuum
 - o MLA operated under vacuum
 - Pressure lower than 10⁻⁵mbars
 - Temperature: 80°C
 - Signal @10Hz for 1000 cycles
 - Voltage from 0V-Vr
 - o Criteria is limited variation of
 - Electrical capacitance
 - Free stroke

Group 2 : Electrical limi

- ☐ Corona Test (verify PASCHEN Effect)
 - Test conditions
 - Test done under low of dry nitrogen (to avoid humidity)
 - Rise of the pressure from 10⁻⁶ Torr to ambient (1decade/min)
 - Rated voltage (DC) applied during test

o Criteria

Variation of leakage current during pressure rise.

Cleaning

Thermal vacuum

Corona test

Electrical limits

GROUP 2 24 month period Electrical limits

Cleaning

Thermal vacuum

Corona test

Electrical limits

- Group 2 : Electrical limi
- ☐ Electrical limits
 - Test conditions
 - Rh below 50% during test
 - DC voltage applied : V = 1.5 x Vr (Vr = Rated voltage)
 - Duration: 1min

o Criteria:

 Electrical resistance remains unaffected during and after test.

GROUP 3 12 month period

12 month period

Mechanical limits

Cleaning

Thermal cycles

Fatigue test

Mechanical limits

Group 3 : Mechanical limi

☐ Thermal cycles test

o Test content

- Voltage = 0V (i.e. shortcut)
- Air or vacuum
- -50°C / +100°C (target is to cover general range of temperature in space projects)
- Temperature shall not exceed component's Curie temperature
- 8 cycles

o Criteria: limited change (after 24h recovery) of

- Electrical capacitance,
- Electrical loss angle.

GROUP 3 12 month period

- Group 3 : Mechanical limi
- ☐ Fatigue test
 - o MLA shall be preloaded (i.e. avoid tensile stress during test)
 - Driving signal close to resonant frequency (reduce test duration and thermal dissipation)
 - Driving amplitude shall allow a strain of 1000ppm.
 - o Number of cycles: 10⁹

- o Success criteria: limited change of
 - Capacitance
 - Free stroke

GROUP 3 12 month period

Mechanical limits

Cleaning

Thermal cycles

Fatigue test

Mechanical limits

Group 3 : Mechanical limi

- Mechanical limits
 - o Apply 1.5 times the blocking force to the component (typically 60MPa)

- O Success criteria :
 - No visible damage
 - Limited variation of
 - Electrical capacity
 - Electrical loss angle
 - Free-Free resonance frequency

Humidity resistance

Cleaning

Humidity

.

Hermeticity (*)

- Group 4: Humidity resistan
 - ☐ Humidity test
 - o 3 test batches with different humidity
 - 4 components tested per batch
 - DC input @ rated voltage
 - 2000h duration
 - Rh levels: 30%; 60%, 80%

- Success criteria
 - Limited increase of leakage current during test
 - 1 failure out of 4 allowed for 80%

ESCC Generic specification

- ☐ Usual tests excluded from qualification tests:
 - Mechanical environment (Sine, Vibrations, shocks, ...).
 - The MLA has to be pre-loaded for these tests;
 - Payload and upper system influence is too important to define a generic test that would be relevant
 - Component's own inertia is too low to generate significant internal forces
 - Stress level partially covered by reliability test

Thermal compensation

- Manage thermal expansion of materials
 - Wedge is selected in order to achieve appropriate expansion
 - The same shell can be used with various types of piezo component
 - Overall CTE can be 0 with piezo-ceramic range of $[-6; +1.5] \mu m/m/K$.

Test bench

- ☐ Thermal vacuum chamber in CNES Toulouse
- ☐ Differential measurement to compensate bench movements
- 2x3 measurement, fibered interferometer
- ☐ From room temperature down to <40K

Cryogenic actuator

☐ Stroke reduction is roughly linear when temperature decreases

	APA X	APA Y	Unité
Stroke room temp.	95	81	μm
Stroke 40K	36	16	μm
% room/ @40K	39	20	%

☐ First activation offset

- Resonance frequency
 - Blocked Free conditions
 - Variation is different between ceramic suppliers
- Quality factor (i.e. Damping)
 - Q factor increases when temperature decreases
 - Consistent with literature

Hysteresis

- When temperature decreases:
- Hysteresis amplitude is reduced
- Relative hysteresis is increased

Creep

- Creep increases immediately after temperature decrease
- Creep stabilises at lower value after cycling

- Electrical capacity
 - Decreases when temperature is reduced
 - Roughly logarithmic behaviour
 - Stable behaviour with preloaded components

- Current leakage
 - o Tested at 150V after 60s
 - Decreases when temperature is reduced
 - Similar behaviour for the 2 tested ceramics (<100nA @ 40K)

CFSM : Specifications

- 2 DoF mirror CFSM
 - Stroke of +/-0.75 Arcsec at 10Hz in cryo environment
 - High resolution: <1mArcsec
 - Low power <10mW peak dissipation
 - o Ø60mm diameter
- Evaluation of thermo-mechanical behaviour [300K -> 30K]
 - Angular drift < 100 mArcsec in tip tilt (with active compensation)
 - Axial drift < 100μm along piston
 - Life duration: 2 years on ground and 5.5 years in orbit operating continuously
- Environmental
 - No use of HDRM: All directions
 - Sine Vibration: 20Gn
 - Random: 17Grms
 - Shock: 700Gn

CFSM verification tests

- Piezoelectric component procurement
 - o LAT Group 1
 - o Burn-in / Ageing 10^7 cycles
 - Force measurement

- Environment tests
 - Random vibrations
 - o Shocks
- Lifetime tests at 30K
 - o 800 Hz functional stroke during 30 days

Conclusions

- ☐ A specification has been proposed to validate piezoelectric components for space use
- Actuators have been designed and tested to expand piezoelectric actuator's use to cryogenic temperatures
- ☐ An example of a space mechanism designed for cryogenic conditions is presented

Final word

- ☐ CTEC would like to thank for their support in the presented activities
 - o ESA: Claudia Allegranza, Denis Lacombe, Ludovic Puig
 - O CNES : Laurent Cadiergues

Questions?